Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 178: 113948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309909

RESUMO

Serving temperature plays a crucial role in influencing the sensory experience of consumers. In this context, this study investigated the influence of serving temperature on the aroma release and perception of a typical fermented alcoholic beverage named Huangjiu. A quantitative sensory description analysis was conducted, determining serving temperature significantly influenced the 17 sensory attributes in both semi-dry and semi-sweet Huangjiu. The variation in the contents of 41 volatiles in the Huangjiu with temperature was investigated using gas chromatography-ion mobility spectrometry, resulting in volatile content significantly increasing above 30 ℃. The partial least squares discriminant analysis was conducted to predict the variable importance for the projection (VIP) of volatiles, and 22 volatiles (VIP > 1) were screened. These 22 volatiles were confirmed as key odorants influenced by serving temperature though aroma addition experiments. The findings would provide a reference for the effects of serving temperature on the flavor perception of fermented alcoholic beverages.


Assuntos
Bebidas Alcoólicas , Odorantes , Odorantes/análise , Temperatura , Cromatografia Gasosa-Espectrometria de Massas , Bebidas Alcoólicas/análise , Percepção
2.
NPJ Biofilms Microbiomes ; 9(1): 65, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726290

RESUMO

Identification of the core functional microorganisms in food fermentations is necessary to understand the ecological and functional processes for making those foods. Wheat qu, which provides liquefaction and saccharifying power, and affects the flavor quality, is a key ingredient in ancient alcoholic huangjiu fermentation, while core microbiota of them still remains indistinct. In this study, metagenomics, metabolomics, microbial isolation and co-fermentation were used to investigate huangjiu. Although Aspergillus is usually regarded as core microorganism in wheat qu to initiate huangjiu fermentations, our metagenomic analysis showed that bacteria Saccharopolyspora are predominant in wheat qu and responsible for breakdown of starch and cellulose. Metabolic network and correlation analysis showed that Saccharopolyspora rectivirgula, Saccharopolyspora erythraea, and Saccharopolyspora hirsuta made the greatest contributions to huangjiu's metabolites, consisting of alcohols (phenylethanol, isoamylol and isobutanol), esters, amino acids (Pro, Arg, Glu and Ala) and organic acids (lactate, tartrate, acetate and citrate). S. hirsuta J2 isolated from wheat qu had the highest amylase, glucoamylase and protease activities. Co-fermentations of S. hirsuta J2 with S. cerevisiae HJ resulted in a higher fermentation rate and alcohol content, and huangjiu flavors were more similar to that of traditional huangjiu compared to co-fermentations of Aspergillus or Lactiplantibacillus with S. cerevisiae HJ. Genome of S. hirsuta J2 contained genes encoding biogenic amine degradation enzymes. By S. hirsuta J2 inoculation, biogenic amine content was reduced by 45%, 43% and 62% in huangjiu, sausage and soy sauce, respectively. These findings show the utility of Saccharopolyspora as a key functional organism in fermented food products.


Assuntos
Saccharopolyspora , Fermentação , Saccharopolyspora/genética , Saccharomyces cerevisiae , Aminoácidos , Celulose
3.
Foods ; 12(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37761107

RESUMO

Huangjiu is rich in low-molecular-weight peptides and has an umami taste. In order for its umami peptides to be discovered, huangjiu was subjected to ultrafiltration, ethanol precipitation, and macroporous resin purification processes. The target fractions were gathered according to sensory evaluation. Subsequently, we used peptidomics to identify the sum of 4158 peptides in most umami fractions. Finally, six novel umami peptides (DTYNPR, TYNPR, SYNPR, RFRQGD, NFHHGD, and FHHGD) and five umami-enhancing peptides (TYNPR, SYNPR, NFHHGD, FHHGD, and TVDGPSH) were filtered via virtual screening, molecular docking, and sensory verification. Moreover, the structure-activity relationship was discussed using computational approaches. Docking analysis showed that all umami peptides tend to bind with T1R1 through hydrogen bonds and hydrophobic forces, which involve key residues HIS71, ASP147, ARG151, TYR220, SER276, and ALA302. The active site calculation revealed that the positions of the key umami residues D and R in the terminal may cause taste differences in identified peptides.

4.
Front Microbiol ; 14: 1181588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138594

RESUMO

Sufu, a traditional Chinese fermented food, is famous for its unique flavor, especially umami. However, the formation mechanism of its umami peptides is still unclear. Here, we investigated the dynamic change of both umami peptides and microbial communities during sufu production. Based on peptidomic analysis, 9081 key differential peptides were identified, which mainly involved in amino acid transport and metabolism, peptidase activity and hydrolase activity. Twenty-six high-quality umami peptides with ascending trend were recognized by machine learning methods and Fuzzy c-means clustering. Then, through correlation analysis, five bacterial species (Enterococcus italicus, Leuconostoc citreum, L. mesenteroides, L. pseudomesenteroides, Tetragenococcus halophilus) and two fungi species (Cladosporium colombiae, Hannaella oryzae) were identified to be the core functional microorganisms for umami peptides formation. Functional annotation of five lactic acid bacteria indicated their important functions to be carbohydrate metabolism, amino acid metabolism and nucleotide metabolism, which proved their umami peptides production ability. Overall, our results enhanced the understanding of microbial communities and the formation mechanism of umami peptides in sufu, providing novel insights for quality control and flavor improvement of tofu products.

5.
World J Microbiol Biotechnol ; 39(7): 172, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115432

RESUMO

Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.


Assuntos
Antineoplásicos , Sedimentos Geológicos , Humanos , Fatores Biológicos , Ecossistema , Antineoplásicos/farmacologia , Ecologia
6.
Foods ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048277

RESUMO

Huangjiu is one of the oldest alcoholic beverages in the world. It is usually made by fermenting grains, and Qu is used as a saccharifying and fermenting agent. In this study, we identified differential carbonyl compounds in Huangjiu with varying sugar contents from different regions. First, we developed and validated a detection method for volatile carbonyl compounds in Huangjiu, and for optimal extraction, 5 mL of Huangjiu and 1.3 g/L of O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) were incubated at 45 °C for 5 min before extracting the volatile carbonyl compounds at 45 °C for 35 min. Second, the targeted quantitative analysis of 50 carbonyl compounds in Huangjiu showed high levels of Strecker aldehydes and furans. Finally, orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to differentiate between Huangjiu with different sugar contents, raw materials, and region of origin. A total of 19 differential carbonyl compounds (VIP > 1, p < 0.05) were found in Huangjiu with different sugar contents (semidry and semisweet Huangjiu), and 20 differential carbonyl compounds (VIP > 1, p < 0.05) were found in different raw materials for Huangjiu production (rice and nonrice Huangjiu). A total of twenty-two and eight differential carbonyl compounds, with VIP > 1 and p < 0.05, were identified in semidry and semisweet Huangjiu from different regions (Zhejiang, Jiangsu, Shanghai, and Fujian), respectively.

7.
J Sci Food Agric ; 103(9): 4293-4302, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36750373

RESUMO

BACKGROUND: Jiuyao is a critical fermenting agent in traditional huangjiu brewing and it affects the quality of huangjiu. To assess and monitor the quality of jiuyao effectively we determined the differences between two common types of substandard jiuyao and normal jiuyao, with emphasis on the comparison of the main components, enzymatic activity, volatile substances, and microbial community structure. RESULTS: The water and starch content, acid protease activity, and esterification capability of type I substandard jiuyao were significantly lower than those of the normal jiuyao, and the protein contents, liquefaction capability, glycation capability, and neutral protease activity were substantially higher than those of the normal jiuyao. Type II substandard jiuyao had significantly lower indices than the normal group except for the starch and free amino acid content, which were significantly higher than those of the normal jiuyao. Significant differences were observed between substandard and normal jiuyao in the content of 21 volatile compounds. 2-Pentylfuran could be used as a marker of substandard jiuyao. Type I substandard jiuyao contained a higher abundance of aerobic Pediococcus and Marivita in comparison with the normal jiuyao. Type II substandard jiuyao consisted of a greater abundance of anaerobic Mucor and Staphylococcus. CONCLUSION: The quality of jiuyao was significantly affected by the water content. Due to the different abundances of aerobic and anaerobic bacteria in jiuyao, oxygen may also be an important parameter affecting the quality of jiuyao. We believe that the present study offers a theoretical basis for the evaluation and control of the quality of jiuyao. © 2023 Society of Chemical Industry.


Assuntos
Reatores Biológicos , Microbiota , Reatores Biológicos/microbiologia , Aminoácidos , Amido , Peptídeo Hidrolases
8.
Foods ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36832981

RESUMO

Aging is a time-consuming step in the manufacturing of fermented alcoholic beverages. Natural-aging huangjiu sealed in pottery jars was taken as an example to investigate the changes of physiochemical indexes during aging and to quantify intercorrelations between aging-related factors and metabolites through machine learning methods. Machine learning models provided significant predictions for 86% of metabolites. Physiochemical indexes well reflected the metabolic profile, and total acid was the most important index that needed to be controlled. For aging-related factors, several aging biomarkers of huangjiu were also well predicted. Feature attribution analysis showed aging year was the most powerful predictive factor, and several microbial species were significantly associated with aging biomarkers. Some of the correlations, mostly connected to environmental microorganisms, were newly found, showing considerable microbial influence on aging. Overall, our results reveal the potential determinants that affect the metabolic profile of aged huangjiu, paving the way for a systematical understanding of changes in metabolites of fermented alcoholic beverages.

9.
J Sci Food Agric ; 103(2): 692-704, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36121332

RESUMO

BACKGROUND: Huangjiu is an important component of traditional fermented food. It is produced by cereal fermentation. Sticky rice fermented huangjiu is an abundant source of polysaccharides, oligosaccharides, proteins, amino acids, and flavor compounds (POPAF), and it has been used as a dietary supplement and pharmaceutical ingredient. The purpose of this study is to explore the alleviation of constipation using sticky rice fermented huangjiu, with the aim of providing a basis for the nutritional treatment of constipation. RESULTS: Sticky rice fermented huangjiu was more effective in the alleviation of constipation than same concentration of ethanol treatment on serum neurotransmitters, gut microbiota, and intestinal metabolites in this 17 days constipation mouse model. Compared with ethanol treatment, the administration of sticky rice fermented huangjiu to constipated mice increased gastrointestinal motility. It alleviated the decrease in motilin (27.94%), substance P (13.85%), gastrin (63.46%), 5-hydroxytryptamine (4.55%), and short-chain fatty acid (19.80%) levels, and alleviated the increase in somatostatin levels (9.54%). Furthermore, the administration of sticky rice fermented huangjiu regulated the microbiota-mediated gut ecology through alterations in the characteristic taxa. CONCLUSION: The results reveal that sticky rice fermented huangjiu may alleviate loperamide-induced constipation by the regulation of serum neurotransmitters and gut microbiota. These findings reveal that huangjiu is endowed with many functional components by cereal fermentation, and the bioactive substances in huangjiu can be separated and applied for medical treatment or diet therapy in the future. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Oryza , Camundongos , Animais , Loperamida/efeitos adversos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Neurotransmissores , Etanol/efeitos adversos
10.
Bioresour Bioprocess ; 10(1): 82, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38647906

RESUMO

Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.

11.
Crit Rev Food Sci Nutr ; : 1-11, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36310425

RESUMO

Traditional fermented alcoholic beverages (TFABs) have gained widespread acceptance and enjoyed great popularity for centuries. COVID-19 pandemics lead to the surge in health demand for diet, thus TFABs once again attract increased focus for the health benefits. Though the production technology is quite mature, food companies and research institutions are looking for transformative innovation in TFABs to make healthy, nutritious offerings that give a competitive advantage in current beverage market. The implementation of intelligent platforms enables companies and researchers to gather, store and analyze data in a more convenient way. The development of data collection methods contributed to the big data environment of TFABs, providing a fresh perspective that helps brewers to observe and improve the production steps. Among data analytical tools, Artificial Intelligence (AI) is considered to be one of the most promising methodological approaches for big data analytics and decision-making of automated production, and machine learning (ML) is an important method to fulfill the goal. This review describes the development trends and challenges of TFABs in big data era and summarize the application of AI-based methods in TFABs. Finally, we provide perspectives on the potential research directions of new frontiers in application of AI approaches in the supply chain of TFABs.

12.
Food Res Int ; 161: 111763, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192929

RESUMO

Higher alcohols (HAs) and acetate esters (AEs) produced by yeasts are two important volatile flavor substances in fermented alcoholic beverages (FABs). To improve the FABs overall quality, lab-scale huangjiu brewing and systematic evaluation were performed using 171 Saccharomyces cerevisiae strains. Finally, two S. cerevisiae strains that produced lower HAs and higher AEs were obtained and named jiangnan1# and jiangnan3#, respectively. The results of production-scale huangjiu fermentation indicated that HAs produced by jiangnan1# sample decreased by 24.99 %, and AEs produced by jiangnan1# increased by 36.35 %. Sensory evaluation showed that the acidic taste, honey aroma attribute intensity were higher in 85# huagnjiu, and the fruity aroma attribute intensity was higher in jiangnan1# huangjiu (P < 0.01). Moreover, urea and ethyl carbamate produced by jiangnan1# strain were degraded by 13.89 % and 45.51 % compared with those of the control strain 85#, indicating the positive effects of jiangnan1# strain on health and safety. Thus, the obtained S. cerevisiae strains in this study can better enhance the flavor and improve the drinking safety and comfort of huangjiu.


Assuntos
Álcoois , Saccharomyces cerevisiae , Acetatos/metabolismo , Álcoois/metabolismo , Ésteres/metabolismo , Saccharomyces cerevisiae/metabolismo , Ureia/metabolismo , Uretana/metabolismo
13.
Food Microbiol ; 108: 104091, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088109

RESUMO

Fermentation temperature (FT) is one of the most critical factors, which can be used to control the growth conditions of S. cerevisiae to obtain excellent final products in winemaking. In this study, we analyzed the responses of six S. cerevisiae strains with different temperature preferences to FT (20 °C, 30 °C, and 35 °C) in huangjiu fermentation. The flavor substances, free amino acids and undesirable secondary metabolites related to huangjiu quality were determined. Results indicated that both S. cerevisiae strains and FT had significant effects on huangjiu fermentation, while the effects were strain-independent and differentiated temperature preferences for different fermentation characteristics. We found that the effects of FT were greater than that of S. cerevisiae strains under the premise of satisfying fermentation completion. Low temperature (20 °C) and high temperature (35 °C) fermentation were possible in the production of differentiated industrial huangjiu styles, while the effects of FT on undesirable secondary metabolites needed to be considered before industrial application. The results showed that a combination of FT with one or more S. cerevisiae strains could be used as a fermentation starter in huangjiu production for different types of products.


Assuntos
Saccharomyces cerevisiae , Vinho , Aminoácidos/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Temperatura , Vinho/análise
14.
Foods ; 11(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35681289

RESUMO

Different alcoholic beverages and drinking patterns might exert divergent impacts on alcoholic liver disease (ALD) progression. Whether the abundant non-alcoholic components (NAC) in fermented wine could alleviate ethanol (EtOH)-induced adverse influences on the liver remains unknown. Hence, the chronic ALD mouse model was established to compare the effects of Huangjiu (a typical fermented wine) and EtOH feeding on the liver, intestinal barrier, gut microbiota, and intestinal short-chain fatty acids (SCFAs) content. Although Huangjiu intake led to slight hepatic steatosis, it mitigated oxidative stress, inflammation, and intestinal damage relative to EtOH intake. In comparison with EtOH feeding, Huangjiu significantly improved the intestinal barrier integrity and reduced hepatic lipopolysaccharide levels by up-regulating the expression of intestinal tight junction proteins (ZO-1 and occludin) and antimicrobial activity peptides (Reg3ß and Reg3γ). The administration of Huangjiu NAC partially restored alcohol-induced gut microbiota dysbiosis via recovering the abundance of Lactobacillus, Faecalibaculum, and Akkermansia. Moreover, mice receiving Huangjiu showed higher SCFAs levels (such as acetic acid and butyric acid) than those receiving EtOH. Huangjiu consumption resulted in lower hepatotoxicity than pure EtOH, at the same alcohol dose. The NAC in Huangjiu might attenuate the progression of ALD by regulating intestinal barrier function and microbiota-meditated gut ecology.

15.
Food Res Int ; 150(Pt A): 110793, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865808

RESUMO

High content of biogenic amine (BA) in huangjiu could pose serious quality concerns. More than 71% of BA in huangjiu were carried over from seriflux (rice soaking wastewater), which were produced by some BA producing bacteria during rice soaking process. A BA non-producing strain, Lactobacillus plantarum JN01, was introduced to rice soaking process, which decreased BA content in seriflux by 93.8% by niche competition at bench scale. Recycling of seriflux inoculated with L. plantarum JN01 at pilot run scale for ten batches demonstrated that BA in seriflux and huangjiu were reduced by 78.4% and 87.7%, respectively. The safety of huangjiu was enormously improved without affecting on the profiles of flavor compounds. Our results demostrated that seriflux recycling technology could reduce 50% of water consumption and achieve "zero effluents" in rice soaking process, which might potentially be a "green technology" not only for huangjiu brewing industry, but also for other related traditional fermented food industries.


Assuntos
Alimentos Fermentados , Lactobacillus plantarum , Bactérias , Aminas Biogênicas , Fermentação
16.
Foods ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828858

RESUMO

The present study focused on isolating an efficient enzyme production microorganism for ferulic acid (FA) production from wheat bran. A wild-type cellulase-, xylanase-, and feruloyl esterase-producing strain was isolated and identified as Penicillium oxalicum M1816. The genome was sequenced and assembled into 30.5 Mb containing 8301 predicted protein-coding genes. In total, 553 genes were associated with carbohydrate metabolism. Genomic CAZymes analysis indicated that P. oxalicum M1816, comprising 39 cellulolytic enzymes and 111 hemicellulases (including 5 feruloyl esterase genes), may play a vital role in wheat bran degradation and FA production. The crude enzyme of strain M1816 could release 1.85 ± 0.08 mg·g-1 FA from de-starched wheat bran (DSWB) at 12 h, which was significantly higher than other commercial enzymes. Meanwhile, when the strain M1816 was cultured in medium supplemented with DSWB, up to 92.89% of the total alkali-extractable FA was released. The process parameters of solid-state fermentation were optimized to enhance enzyme production. The optimized wheat bran Qu of P. oxalicum M1816 was applied to huangjiu fermentation, and the FA content was increased 12.4-fold compared to the control group. These results suggest that P. oxalicum M1816 is a good candidate for the development of fermented foods bio-fortified with FA.

17.
Front Pharmacol ; 12: 689092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220514

RESUMO

Hyperlipidemia is a chronic disorder that is difficult to cure and usually treated with long-term lipid-reducing drugs. Recent trends have led to the use of diet therapies or food-derived strategies in the treatment of such long-term diseases. The Chinese rice wine (huangjiu) contains a wide range of bioactive peptides that are produced during the multi-species fermentation process. To clarify the regulation effects of lipid metabolism and gut microbiota by huangjiu bioactive peptides, three huangjiu peptides were isolated, purified and characterized by hyper-filtration, macroporous resin, gel filtration separation and structural identification. Meanwhile, a mouse model of high-fat diet-induced hyperlipidemia was established to study the effects of huangjiu peptides on serum biomarker, hepatic metabolism and gut microbiota dysbiosis. Experimental results showed that huangjiu peptides T1 and T2 (HpT1, HpT2) treatment alleviated the increase in serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and aberrant hepatic lipid accumulation in the high-fat diet-induced hyperlipidemia mice. Furthermore, HpT2 and HpT1 restored the α-diversity and structure of gut microbial community after hyperlipidemia-induced microbiota disturbance compared with simvastatin and HpT3. The administration of HpT2 and HpT1 regulated the microbiota-mediated gut ecology through alterations of characteristic taxa including Lactobacillus, Ileibacterium, Faecalibaculum and Alloprevotella by linear discriminant analysis effect size analysis. Collectively, our results offer new insights into the abilities of food-derived peptides on alleviation of high-fat diet-induced hyperlipidemia, hepatic steatosis and gut dysbiosis in mice.

18.
Food Chem ; 354: 129503, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33743446

RESUMO

As a flavor and quality parameter, furfural has potential undesirable effects. This study aimed to elucidate furfural formation, including generation, pathways, and possible precursors during the production of Zhenjiang aromatic vinegar. A cereal vinegar model, rich in saccharides, amino acids, and organic acids, was used to explore the potential precursors. Furfural and 5-hydroxymethylfurfural (HMF) mainly generated during the decoction process, but the HMF also increased during the aging process. Three pathways were found to coexist for the formation of furfural: (i) the Maillard reaction induced by saccharides and nitrogenous compounds, (ii) the direct cleavage of pentose, and (iii) indirect conversion from pentosan, which only made a minor contribution. Furfural was not formed from HMF or l-ascorbic acid in vinegar. Instead, ribose, xylose, arabinose, galacturonic acid, glucuronic acid, and pentosan were the main precursors. These insights may be useful for the risk/benefit balance and improve the flavor quality and safety.


Assuntos
Ácido Acético/análise , Furaldeído/análise , Aminoácidos/análise , Ácido Ascórbico/análise , Cromatografia Líquida de Alta Pressão/métodos , Furaldeído/análogos & derivados , Furaldeído/química , Espectrofotometria Ultravioleta , Açúcares/análise , Ácidos Urônicos/análise
19.
J Agric Food Chem ; 68(34): 9195-9204, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786860

RESUMO

Gas chromatography-mass spectrometry (GC-MS) coupled with the acceptance test, partial least-squares regression (PLSR) analysis, validation experiment, and preference test was used to identify the key aroma compounds in dog foods (DFs). Six DFs were evaluated by spraying six palatability enhancers onto a basal DF. The differently flavored palatability enhancers were prepared by the Maillard reaction using different protein sources and reaction conditions. The intake ratios of the six DFs were tested by six adult beagle dogs and were classified into high, medium, and low levels. A total of 55 volatile compounds were identified using headspace solid-phase microextraction (HS-SPME) GC-MS. Correlation analysis of the volatile compounds associated with intake ratios using partial least-squares regression (PLSR) found nine significantly positive and three significantly negative compounds that made a significant contribution to the palatability of DFs. Validation tests undertaken by adding three significantly positive compounds, one significantly negative compound, and one nonsignificant compound into the odorless matrix successfully verified the accuracy prediction of the PLSR model. The nine significantly positive compounds were heptanal, nonanal, octanal, (E)-2-hexenal, (E,E)-2,4-decadienal, 2-pentylfuran, 4-methyl-5-thiazoleethanol, 2-furfurylthiol, and (E)-2-decenal. The contributions of nine key aroma compounds were further analyzed by the preference test. (E)-2-decenal, 2-furfurylthiol, and 4-methyl-5-thiazoleethanol showed higher first choice, consumption ratio, and unit contribution rate and were vital to the overall preferred aroma of DFs.


Assuntos
Ração Animal/análise , Odorantes/análise , Compostos Orgânicos Voláteis/química , Animais , Cães , Feminino , Preferências Alimentares , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Microextração em Fase Sólida , Paladar , Compostos Orgânicos Voláteis/isolamento & purificação
20.
Food Res Int ; 136: 109434, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846543

RESUMO

Zhenjiang aromatic vinegar (ZAV) is one of the most famous traditional Chinese cereal vinegars. The key aroma compounds in aged ZAV were characterized by gas chromatography-olfactometry-mass spectrometry (GC-O-MS), odor activity values (OAVs), aroma recombination and omission experiments. Sensory analysis revealed that higher odor intensity of caramel-like, buttery and overall complexity were observed for aged ZAV compared with fresh ZAV. A total of 68 compounds were quantitated, including 27 odorants with OAVs >1.0 in the aged ZAV. Sotolon was detected for the first time in Chinese cereal vinegars. Furthermore, the levels of 2,3-butanedione, 2-methylpropanal, sotolon, dimethyl trisulfide, 3-hydroxy-2-butanone, 2,4,5-trimethyloxazole and tetramethylpyrazine changed significantly during the aging process. Aroma recombination revealed that the aroma profile of the aged vinegar could be closely simulated. Omission experiments demonstrated the important contributions of seven aroma compounds to the aged ZAV aroma, including 2,3-butanedione, acetic acid, 2-methylpropanal, sotolon, 2,4,5-trimethyloxazole, 3-methylbutanoic acid and tetramethylpyrazine. This study indicates that the aging process substantially contribute to the overall aroma of ZAV.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Ácido Acético , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Olfatometria , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...